
Individual Round 2023-2024 Solutions
Problem 1. A standard analog clock has three hands (seconds, minute, and hour), and the usual 12 hourly
labels 1:00, 2:00, . . . , 12:00. Each hand rotates around the clock continuously. Assume that this clock records
the time perfectly. At 12:00 PM sharp, the three hands of the clock are all pointing in exactly the same direction,
at the 12:00 label. After some exact amount of time passes during the same day, the minute and hour hands are
again pointing in the exact same direction, while the seconds hand is pointing in a direction closer to the 4:00
label than any of the other hourly labels. How much time, in minutes, has passed? Round your answer to the
nearest integer.

Proposed by Brian Yang

Solution: 196 .
Every minute, the minute (resp. hour) hand of the clock moves 6◦ (resp. 0.5◦), as there are 60 minutes (resp.
12 hours, or 720 minutes) in a full revolution of the minute (resp. hour) hand. Let x be the number of minutes
until the first time the minute and hour hands “meet” after 12:00; the minute hand has made at least one full
revolution, so we must have 6x = 0.5x+360. Thus, x = 720

11 = 65 5
11 minutes, i.e. the seconds hand is pointing

in a direction 5
11 of a full revolution clockwise of 12:00. By symmetry, the minute and hour hands must meet in

periods of x = 65 5
11 minutes. In particular, on the nth time the minute and hour hands meet, the seconds hand

is pointing in a direction 5n
11 (mod 1) of a full revolution clockwise of 12:00. Now, 5n

11 (mod 1) may take the
values {0, 1

11 , . . . ,
10
11}, so the seconds hand points closer to the 4:00 label than any of the hour labels precisely

when 5n
11 ≡ 4

11 (mod 1). The values of n “solving” this congruence are given by n ≡ 3 (mod 11), and only
the smallest positive value of n = 3 corresponds to the same day. Therefore, the answer is 65 5

11 · 3 minutes,
rounding to 196 minutes.

Problem 2. The dreaded pirate captain Jack D. Luffy and his crew found a buried treasure chest on a deserted
island, containing gold and silver coins as loot. Monetarily, a single gold coin is worth Q > 1 silver coins (Q
need not be an integer), and a single silver coin is worth many times one unit of the national currency. The
pirates agree to share the spoils fairly; that is, every pirate receives the same amount of loot in monetary value
(but the number of gold and silver coins received by each pirate may vary). Jack receives 1

6 the total number
of gold coins and 1

10 the total number of silver coins from the chest. After counting up his loot again, Jack
observes he has received four times as many silver coins as gold coins. What is the sum of all possible values
of Q?

Proposed by Brian Yang

Solution:
52
3

.

Let s,g be the total monetary value of silver and gold contained in the chest, and n the number of pirates
(including Jack). Since each pirate receives the same amount of loot, we have

n
( s

10
+

g
6

)
= s+g.

This equation rearranges to 3s(10−n) = 5g(n−6). Thus, n ∈ {7,8,9}. This leaves three cases.
First, assume n = 7. Then, 9s = 5g. Thus, Jack’s spoils consists of g

6 value in gold and 5g
90 value in silver. In

particular, the ratio of value in gold to value in silver in Jack’s spoils is 3 : 1. Since these spoils involve four
times as many silver coins as gold coins, we deduce Q = 3 ·4 = 12, i.e. a single gold coin is worth 12 times a
single silver coin.
For the remaining cases, the computation is similar. Next, assume n = 8. Then, 3s = 5g, and Jack’s spoils
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consists of g
6 value in gold and g

6 value in silver. The gold to silver value ratio is 1 : 1, so Q = 1 ·4 = 4.
Finally, assume n = 9. Then, s = 5g, and Jack’s spoils consists of g

6 value in gold and g
2 value in silver. The

gold to silver value ratio is 1 : 3, so Q = 1
3 ·4 = 4

3 .
Hence, the sum of the possible values of Q is

12+4+
4
3
=

52
3

.

Problem 3. A Caltech prefrosh is participating in rotation. There are 8 houses at Caltech: Avery, Blacker,
Dabney, Fleming, Lloyd, Page, Ricketts, and Venerable. The prefrosh visits these houses in some order, each
of them exactly once. Throughout rotation, the prefrosh maintains a ranking list of all of the houses that the
prefosh has visited. After every visit to a house, the prefrosh updates the ranking list by inserting the most
recently visited house to either the top or the bottom of the list, each with probability 1

2 , while keeping the order
of all previously visited houses the same. Compute the probability that at the end of rotation, third house the
prefrosh visited is not ranked fourth or fifth on their list.

Proposed by Justin Lee

Solution:
17
32

.

Towards complementary counting, we shall compute the probability that the 3rd house visited is ranked 4th.
Immediately after the 3rd house is visited, there is a 1

2 probability it is ranked 1st and a 1
2 probability it is ranked

3rd (last).
In the first case, the 3rd house is ranked 4th at the end of rotation if and only if the prefrosh inserts exactly 3 of
the 5 houses after the 3rd house to the top of the list. This occurs with probability 1

25 ·
(5

3

)
= 10

32 . In the second
case, the 3rd house is ranked 4th at the end of rotation if and only if the prefrosh inserts exactly 1 of the 5 houses
after the 3rd house to the top of the list. This occurs with probability 1

25 ·
(5

1

)
= 5

32 . All in all, the probability the
3rd house is ranked 4th is 1

2 ·
10
32 +

1
2 ·

5
32 = 15

64 . By symmetry, the probability the 3rd house is ranked 5th is also

15
64 . Then, the probability the 3rd house is ranked neither 4th nor 5th is 1− 15

64 −
15
64 =

17
32

.

Problem 4. Find the number of positive real numbers x such that

log3(x) =
x+15

4
−
⌊

x−1
4

⌋
and ⌊log5(x)⌋= 2

(for any positive real number y, recall that ⌊y⌋ is the greatest integer less than or equal to y).

Proposed by Ritvik Teegavarapu and Brian Yang

Solution: 11 .
Let { } denote fractional part as usual. The first equation rewrites as

log3(x) =
x+15

4
−
⌊

x−1
4

⌋
= 4+

x−1
4

−
⌊

x−1
4

⌋
= 4+

{
x−1

4

}
.

In particular, 4 ≤ log3(x) < 5, i.e. 81 = 34 ≤ x < 35 ≤ 243 (by monotonicity of the logarithm). Next, the
second equation ⌊log5(x)⌋= 2 is equivalent to 2 ≤ log5(x)< 3, i.e. 25 ≤ x < 125. Thus, the task is to find all
81 ≤ x < 125 in which log3(x) = 4+

{ x−1
4

}
.
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Observe that the function
{ x−1

4

}
is piecewise linear of slope 1

4 on intervals of the form [4k + 1,4k + 5) for
integers k. In particular, 4+

{ x−1
4

}
= 4 at x = 4k+1, while the left-sided limit limx→(4k+5)−(4+

{ x−1
4

}
) = 5.

Now, note there is some δ > 0 in which log3(x) ∈ [4,5− δ ) for all 81 ≤ x < 125. By continuity and the
intermediate value theorem, the functions 4+

{ x−1
4

}
and log3(x) take the same value at least once on each

of the 11 intervals [4k+ 1,4k+ 5) = [81,85), [85,89), . . . [121,125). In a small open neighborhood of each
such interval [4k+1,4k+5), the derivative of 4+

{ x−1
4

}
− log3(x) in x (which is generally 1

4 −
1

x ln3 ) is clearly
positive, so the functions 4+

{ x−1
4

}
and log3(x) take the same value at most once on each interval.

Problem 5. Call a natural number n > 1 flavorful if, for every prime divisor p of n, p2 is also a divisor of n.
Find the largest positive integer that cannot be expressed as the sum of one or more distinct flavorful numbers.

Proposed by Justin Lee

Solution: 30 .
First notice that all multiples of 4 can be expressed as the sum of distinct powers of 2 that are greater than
or equal to 4. Now, the three smallest flavorful numbers that are not multiples of 4 are 9, 25, and 27. Any 1
(mod 4) number greater than or equal to 9 can be written as 9 plus distinct even flavorful numbers. Moreover,
any 3 (mod 4) number greater than or equal to 27 can be written as 27 plus distinct even flavorful numbers.
Lastly, any 2 (mod 4) number greater than or equal to 34 can be written as 9+25 plus distinct even flavorful
numbers. It is clear that 30 cannot be written as the sum of distinct flavorful numbers (for we would need at
least two odd numbers in the sum), so the answer is 30 .

Problem 6. Let R be a right rectangular prism with vertices A1,A2,A3,A4,B1,B2,B3,B4, where A1A2A3A4 and
B1B2B3B4 are two parallel rectangular faces, with A1A2 = B1B2 = 3,A2A3 = B2B3 = 7, and A1B1,A2B2,A3B3,
and A4B4 are mutually parallel edges of R. Suppose that a plane intersects segments A1B1,A2B2,A3B3, and
A4B4 at P1,P2,P3, and P4, respectively, dividing R into two solids, each with volume exactly 1

2 that of R. If
three of the lengths A1P1,A2P2,A3P3, and A4P4 are 3,4, and 6 in some order, then find the sum of all possible
values of the volume of R.

Proposed by Brian Yang

Solution: 546 .
Suppose P1,P2,P3, and P4 are points on the lines A1B1,A2B2,A3B3, and A4B4, respectively. For the four points
P1,P2,P3, and P4 to be coplanar, we claim it is necessary and sufficient that they form a parallelogram P1P2P3P4.
Indeed, it is clear that if they form a parallelogram, then they are coplanar. Conversely, if they are coplanar,
then let P′

3 ∈ R3 be such that P1P2P′
3P4 is a parallelogram. Since the orthogonal projections of P1,P2, and P4

onto the plane of A1A2A3A4 are A1,A2, and A4, respectively, it follows P′
3 is such that its orthogonal projection

onto the plane of A1A2A3A4 is A3 (since A1A2A3A4 is a rectangle). Thus, P′
3 lies on A3B3. Since P3 also lies in

this line, we conclude P3 = P′
3, verifying the claim.

Now, assume P1,P2,P3, and P4 lie on the segments A1B1,A2B2,A3B3, and A4B4, respectively. Put xi = PiAi for
1 ≤ i ≤ 4. By a straightforward length-chasing argument (i.e., Cartesian coordinate system), notice P1P2P3P4
is a parallelogram, i.e. the four points are coplanar, if and only if x1 + x3 = x2 + x4. Thus, we must consider
the set of all non-negative integers x such that 3,4,6,x is a solution to this equation. Out of the four lengths
x1,x2,x3,x4, either the lengths x1,x3, or the lengths x2,x4, are the smallest and largest, in some order. Hence, if
x < 3, then we must have x+6 = 3+4, yielding x = 1. If 3 ≤ x ≤ 6, then we must have x+4 = 3+6, yielding
x = 5. Finally, if x > 6, then we must have x+3 = 4+6, yielding x = 7. This results in 3 4-tuples, which are
(1,3,4,6),(3,4,5,6),(3,4,6,7), each representing the lengths x1,x2,x3,x4 in some order.
For any such 4-tuple, let m,M be the minimum and maximum lengths. In lieu of the volume bisection condition,
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we claim that m+M is necessarily the length of the lateral edge of R (i.e., the length of A1B1). Indeed, suppose
K is the intersection of the diagonals of parallelogram P1P2P3P4. Since the orthogonal projection of K onto the
plane of A1A2A3A4 is the center of that rectangle, the length of this orthogonal projection is just the average of
x1,x2,x3,x4, which is exactly m+M

2 . Then, if K coincides with the center of R, i.e., if m+M is the length of the
lateral edge of R, the map r : R → R defined by reflection through K is a bijective isometry, hence is volume
preserving. In particular, let SA,SB be the two solids defined by R and the plane of P1P2P3P4; then, r maps
one of the two solids defined by R and the plane of P1P2P3P4 onto the second one, so that they have the same
volume. Otherwise, K is not the center of R, in which case the image SA by r is either properly contained in,
or properly contains SB, so that the two solids have different volumes. Having proven the desired claim, we
conclude that the answer is 3 ·7 · ((1+6)+(3+6)+(3+7)) = 546 .

Problem 7. League of Legends is a two-team video game, one team playing on the blue side and the other
playing on the red side, where every game results in a win for one team and a loss for the other. The League of
Legends teams T1 and JDG play a best-of-five series of games: that is, the two teams play games until one of
them has won three games. In the first game, T1 plays on the blue side. In every subsequent game, the team that
lost the previous game plays on the blue side. The two teams are equally matched, but “side selection” matters:
the probability that the team on the blue side wins any particular game is 2

3 . After the best-of-five series, what
is the expected number of games won by the team playing on the blue side?

Proposed by Brian Yang

Solution:
238
81

.

We label the two teams A and B, where A plays on the blue side in the first game of the best-of-five. We
write outcomes to the best-of-five series as strings of length 3,4, or 5. The best-of-five series ends in 3 games
if and only if one team wins 3 games in a row, i.e. either AAA or BBB occurs. In the former (resp. latter)
case, 1 game (resp. 0 games) is won on blue side. Thus, the probability the best-of-five ends in 3 games is
(2

3)(
1
3)

2 +(1
3)

3 = 1
9 .

Now consider the case where the best-of-five series ends in 4 games. If A wins the first game, then either
ABAA, AABA, or ABBB occurs. These cases correspond to 3, 3, or 2 blue side wins, respectively, yielding
a probability of 2 · (2

3)
3(1

3)+ (2
3)

2(1
3)

2 = 20
81 . Likewise, if B wins the first game, then either BABB, BBAB,

or BAAA occurs. These cases correspond to 2, 2, or 1 blue side wins, respectively, yielding a probability of
2 · (2

3)
2(1

3)
2 +(2

3)(
1
3)

3 = 10
81 . All in all, the probability the best-of-five ends in 4 games is 20

81 +
10
81 = 10

27 .
In particular, the probability that any one of the first three games is played is 1, the probability that the fourth
game is played is 1− 1

9 = 8
9 , and the probability that a fifth game is played is 1− 1

9 −
10
27 = 14

27 . The expected
number of blue side wins contributed by any one of the 5 games, conditioning on the event the game is played,
is, by definition, 2

3 . On the other hand, the expected number of blue side wins contributed by any one of the
5 games, conditioning on the event the game is not played, is trivially 0. We then conclude by linearity of
expectation that the desired expectation value is

2
3

(
1+1+1+

8
9
+

14
27

)
=

238
81

.

Problem 8. For a positive integer k ≥ 2, let αk, βk,γk be the complex roots (with multiplicity) of the cubic
equation

(
x− 1

k−1

)(
x− 1

k

)(
x− 1

k+1

)
= 1

k . Determine the value of

∞

∑
k=2

αkβkγk · (1+αk) · (1+βk) · (1+ γk)

k+1
.

4



Proposed by Ritvik Teegavarapu

Solution:
27
16

.

Define the polynomial

P(x) =
(

x− 1
k−1

)
·
(

x− 1
k

)
·
(

x− 1
k+1

)
− 1

k
= (x−αk)(x−βk)(x− γk).

Observe that

−P(0) =−(0−αk) · (0−βk) · (0− γk) = αkβkγk

−P(0) =−
(

−1
k−1

· −1
k

· −1
k+1

− 1
k

)
=

1
k · (k2 −1)

− 1
k
=

k
k2 −1

−P(−1) =−(−1−αk) · (−1−βk) · (−1− γk) = (1+αk)(1+βk)(1+ γk)

−P(−1) =−
(
−1− 1

k−1

)
·
(
−1− 1

k

)
·
(
−1− 1

k+1

)
− 1

k
=

k2 +3k−1
k · (k−1)

.

Hence, we would like to compute

∞

∑
k=2

αkβkγk · (1+αk) · (1+βk) · (1+ γk)

k+1
=

∞

∑
k=2

k2 +3k−1
k · (k−1) · (k+1)

· k
k2 −1

=
∞

∑
k=2

k2 +3k−1
(k−1)2 · (k+1)2

=
∞

∑
k=2

((
1/2

k−1
− 1/2

k+1

)
+

(
3/4

(k−1)2 −
3/4

(k+1)2

))
=

(
1+

1
2

)
+

3
4
·
(

1
12 +

1
22

)
=

27
16

.

For the last two equations, we have applied partial fraction decomposition and telescoping sums.

Problem 9. Let ABC be a triangle with orthocenter H and AB = 17,BC = 28,CA = 25. Let X be a point whose
distance to BC is 2. Suppose BX and HC intersects at Y , and CX and HB intersects at Z, such that Y Z < BC
and YC ·CA = ZB ·BA. Find AX .

Proposed by Brian Yang

Solution:
√

313 .
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A

B C

H

A′

X Y

Z

D D′

Let A′ be the reflection of A over the midpoint of BC, and let D,D′ be the feet of the altitudes from A,A′,
respectively, onto BC. Since YC ·CA = ZB ·BA, we have A′C

CY = A′B
BZ . Furthermore, from AB ∥ CA′,AC ∥ BA′

follows A′C ⊥ CY ,A′B ⊥ BZ. Thus, △A′CY ∼ △A′BZ. Assume on the contrary that this similarity is ori-
entation preserving, i.e. ∡YA′C = ∡ZA′B, then we have △CA′B ∼ △YA′Z (orientation preserving). Note
A′Y ≥ A′C,A′Z ≥ A′B, as A′C,A′B are the altitudes of A′ onto HC and HB, respectively. Hence, Y Z ≥ BC, a
contradiction. Thus, △A′CY ∼ △A′BZ is an orientation reversing similarity, i.e. ∡YA′C = ∡BA′Z. Let lB, lC
be the perpendiculars to BC at B,C, respectively. By the converse to Jacobi’s theorem on triangle A′BC, A′X
intersects the point at infinity lB ∩ lC, i.e. X ∈ A′D′.
Since the distance from X to BC is defined, this leaves us with 2 possible choices for X : either XD′ meets the
interior of triangle ABC or it does not. Clearly Y Z < BC only in the former case. Now, observe that triangle
BDA is an 8-15-17 right triangle, and triangle ADC is a 3-4-5 right triangle. Therefore, AD = 15,BD = 8,DD′ =

12,D′C = 8. By the Pythagorean theorem, AX =
√

122 +(15−2)2 =
√

313 .

Problem 10. Brian and Stephanie are sitting next to each other at a round table with a number of other people
(possibly 0 other people). The people at the table pass a rubber ball to each other, always to the person on their
left. The ball starts with Stephanie, and arrives at Brian after exactly 2024 passes.
Suppose that after k more passes (1 ≤ k ≤ 2024), Stephanie receives the ball again. How many possible values
of k are there?

Proposed by Ritvik Teegavarapu

Solution: 1153 .
Let n be the number of people at the table. Label the people at the table 0,1,2, . . . ,n− 1 (mod n) clockwise,
such that Stephanie is labelled 0 (thus, Brian is either labelled +1 or −1). We say that an integer 1 ≤ k ≤ 2024
is good if it satisfies the conditions of the problem statement. Since Stephanie receives the ball after k+2024
passes, we have n | k+2024.
Assume Brian is labeled by −1. Then, since Brian receives the ball after 2024 passes, we have 2024 ≡ −1
(mod n). Since n ≥ 2, this means gcd(k+2024,2025)> 1 is necessary. On the other hand, if 1 ≤ k ≤ 2024 is
such that gcd(k+2024,2025)> 1, then k is certainly good, simply by taking n = gcd(k+2024,2025). Hence,
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in the Brian labelled by −1 case, k is good if and only if gcd(k + 2024,2025) = gcd(k − 1,2025) > 1. An
analogous argument shows that in the Brian is labeled by +1 case, k is good if and only if gcd(k+2024,2023) =
gcd(k+1,2023)> 1.
Thus, the task is to find the number of positive integers 1 ≤ k ≤ 2024 such that gcd(k− 1,2025) or gcd(k+
1,2023) is greater than 1. Towards complementary counting, we shall compute the number of positive integers
0 ≤ k ≤ 2023 such that gcd(k,2025) = gcd(k+ 2,2023) = 1 simultaneously. Noting the prime factorizations
2025 = 32 ·52,2023 = 7 ·172, we observe

gcd(k,2025),gcd(k+2,2023) = 1 ⇐⇒ 3 ∤ k, 5 ∤ k, 7 ∤ k+2, 17 ∤ k+2

for any positive integer k. Thus, the Chinese Remainder theorem implies that among the positive integers
0 ≤ k < 3 ·5 ·7 ·17 = 1785, there are exactly ϕ(1785) = 2 ·4 ·6 ·16 = 768 positive integers such that 3 ∤ k, 5 ∤
k, 7 ∤ k+2, 17 ∤ k+2. It remains to find the number of integers 1785 ≤ k ≤ 2023 such that the above condition
holds. It suffices to work over the range 0 ≤ k ≤ 2023−1785 = 238.
In the range 0 ≤ k < 210, there are 2 ·ϕ(105) = 2 · (2 · 4 · 6) = 96 integers k such that 3 ∤ k, 5 ∤ k, 7 ∤ k+ 2.
Among these 96 integers, we check directly that k = 32,83,134,151,202 satisfies 17 | k+ 2, and the other 91
of them satisfies 17 ∤ k+ 2. In the range 210 ≤ k < 239, there are 15 integers k such that 3 ∤ k,5 ∤ k. Among
these 15 integers k, we check directly that k = 219,229,236 satisfies either 7 | k+2 or 17 | k+2, so the other
12 of them satisfy 7 ∤ k+2,17 ∤ k+2.
Therefore, there are exactly 768+91+12 = 871 positive integers 0 ≤ k ≤ 2023 such that gcd(k,2025),gcd(k+
2,2023) = 1. In other words, the number of good numbers 1 ≤ k ≤ 2024 is just 2024−871 = 1153 .

Problem 11. Pick a point P uniformly at random from the interior of an equilateral triangle ABC. What is the
probability that the lengths PA,PB,PC determine a non-degenerate triangle of area at least 2

9 that of triangle
ABC?

Proposed by Brian Yang

Solution:
9+2π

√
3

27
.

We recall the following useful lemma due to Leibniz:

Lemma 1. Let ABC be a triangle, G its centroid. For any point P, we have

PA2 +PB2 +PC2 = GA2 +GB2 +GC2 +3(GP2).

Proof. We can interpret everything here as vectors: let G⃗A = x⃗, G⃗B = y⃗, G⃗C = z⃗, G⃗P = v⃗. Then, by basic
properties of the dot product:

PA2 +PB2 +PC2 = |⃗x− v⃗|2 + |⃗y− v⃗|2 + |⃗z− v⃗|2

= (⃗x− v⃗) · (⃗x− v⃗)+ (⃗y− v⃗) · (⃗y− v⃗)+ (⃗z− v⃗) · (⃗z− v⃗)

= |⃗x|2 + |⃗y|2 + |⃗z|2 +3|⃗v|2,

which is exactly what we need to show. The last equality here is because x⃗+ y⃗+ z⃗ = 0⃗ by definition of centroid.

Return to the original problem. WLOG we assume ABC is a unit equilateral triangle. Let ∆ be the triangle
determined by sides PA,PB,PC (we shall show ∆ always exists), and [∆] its area. In light of the above lemma,
we shall see that [∆] is determined by the length of GP, where G is the centroid of the equilateral triangle ABC
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(also the incenter, circumcenter of ABC). Assuming ABC is oriented counterclockwise, let PA,PB,PC be the
images of P by the 60◦ clockwise rotation with centers A,B,C, respectively:

A

B C

P

PA

PB

PC

By rotation, △PBC ∼=△PCAC,△PCA ∼=△PABA,△PAB ∼= PBCB. Since [PBC]+ [PCA]+ [PAB] = [ABC], we
deduce [APABPBCPC] = 2 · [ABC] (as usual, [·] denotes area). Furthermore, the triangles PAPA,PBPB,PCPC are
all equilateral triangles (e.g., because PA = PPA and ∠APPA = 60◦), though not necessarily mutually congruent,
while the (non-degenerate) triangles PPAB,PBCP,APPC have the same side lengths as ∆, hence are mutually
congruent with ∆. Applying the above lemma,

[∆] =
1
3
(2 · [ABC]− [PAPA]− [PBPB]− [PCPC])

=
1
3

(√
3

2
−

√
3

4
(
PA2 +PB2 +PC2))

=
1
3

(√
3

2
−

√
3

4
(
GA2 +GB2 +GC2 +3(GP2)

))
=

√
3

12
−

√
3

4
·GP2,

where we have used the fact GA2 +GB2 +GC2 = 1.
Since [ABC] =

√
3

4 , the area [∆] is at least 2
9 · [ABC] =

√
3

18 precisely when GP2 ≤ 1
9 , i.e. GP ≤ 1

3 . Thus, the
answer to the question is given precisely by the area of the shaded region divided by the area of triangle ABC
in the following figure:

The shaded region is bounded by ABC and the circle with center G and radius 1
3 . This region consists of three

equilateral triangles, each of side length 1
3 , and three circular arcs, each of measure 60◦ and radius 1

3 . Thus, the
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answer is
3 ·

√
3

4 · (1
3)

2 +3 ·π(1
3)

2 · 1
6√

3
4

=
9+2π

√
3

27
.

Problem 12. Compute

103

∑
k=0

(
⌊k(3−

√
3)⌋−

⌊⌊
(2−

√
3)(k+1)

⌋
· (3+

√
3)
⌋)2

(note that
√

3 ≈ 1.73).

Proposed by Ritvik Teegavarapu and Brian Yang

Solution: 347 .
For any real number r > 1, introduce the set Br := {⌊r⌋,⌊2r⌋ . . .}. Note Br is a subset of the natural numbers
N= {1,2, . . .}. Recall:

Lemma 1 (Beatty’s theorem). For any irrational numbers r,s > 1 such that 1
r +

1
s = 1, the sets Br,Bs partition

N.

Proof. Assume on the contrary there are integers j,k, l > 0 such that j = ⌊kr⌋= ⌊ls⌋, i.e. j ≤ kr, ls < j+1. By
irrationality of r,s, and j being non-zero, the inequalities here are strict: j < kr, ls < j+1; that is:

j
r
< k <

j+1
r

j
s
< l <

j+1
s

.

Summing these inequalities together and using the hypothesis 1
r +

1
s = 1, we obtain j < k+ l < j+1, a contradic-

tion since k+ l is an integer. This proves Br ∩Bs = /0. A similar argument proves (N\Br)∩(N\Bs) = /0.

We also note the following. Suppose 1 < r < 2 is irrational, then for any integer k > 0, we have ⌊(k+ 1)r⌋−
⌊kr⌋ ∈ {1,2}. Furthermore, ⌊(k+1)(r−1)⌋= ⌊k(r−1)⌋+1 precisely when ⌊(k+1)r⌋−⌊kr⌋= 2. This holds
because ⌊(k+1)(r−1)⌋ = ⌊(k+1)r⌋− (k+1), ⌊k(r−1)⌋ = ⌊kr⌋− k. In lieu of these observations, we may
obtain the following “improvement” to Lemma 1:

Lemma 2. Let r,s > 1 be irrational numbers such that r < 2, 1
r +

1
s = 1. Let S be the set of all k ∈ N such that

⌊(k+1)r⌋−⌊kr⌋= 2. Then, for any k ∈ S,

⌊⌊(k+1)(r−1)⌋ · s⌋= ⌊kr⌋+1.

Proof. Write S as an increasing sequence k1,k2, . . . . We induct on n, where n is the index of this sequence.
For every 1 ≤ k < k1, we have ⌊(k+ 1)(r− 1)⌋ = ⌊k(r− 1)⌋ by the above observation. Hence, ⌊(k+ 1)(r−
1)⌋ = ⌊1 · (r−1)⌋ = 0, i.e. ⌊⌊(k+1)(r−1)⌋ · s⌋ = 0. Moreover, notice ⌊(k1 +1)(r−1)⌋ = ⌊k1(r−1)⌋+1 =
1, and so by Lemma 1, the only possible value of the number ⌊⌊(k1 + 1)(r − 1)⌋ · s⌋ is exactly ⌊k1r⌋+ 1.
Now inductively assume that the desired statement is true for k1,k2, . . . ,kn ∈ S, and that ⌊(ki + 1)(r − 1)⌋ =
i for 1 ≤ i ≤ n. For kn < k < kn+1, we have ⌊(k + 1)(r − 1)⌋ = ⌊k(r − 1)⌋. Thus, ⌊(kn+1 + 1)(r − 1)⌋ =
⌊kn+1(r − 1)⌋+ 1 = ⌊(kn + 1)(r − 1)⌋+ 1 = n + 1, and again by Lemma 1, the only possible value of the
number ⌊⌊(kn+1 +1)(r−1)⌋ · s⌋ is exactly ⌊kn+1r⌋+1 (by induction, we have already accounted for n smallest
values ⌊k1r⌋+1,⌊k2r⌋+1, . . .⌊knr⌋+1 ∈ Bs).

In the situation of the above Lemma 2, we may also observe the following: for integers 1 ≤ k < minS, we have
⌊⌊(k+1)(r−1)⌋ · s⌋= 0. Otherwise, suppose k ∈ N\S. Then, if k′ is the largest number in S such that k′ ≤ k,
then we have ⌊⌊(k′+1)(r−1)⌋ · s⌋= ⌊⌊(k+1)(r−1)⌋ · s⌋.
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Turning to the original problem, set r = 3 −
√

3,s = 3 +
√

3, and notice r − 1 = 2 −
√

3 and 1
r +

1
s = 1.

Here, we shall use the decimal approximation
√

3 ≈ 1.73. In lieu of the above two lemmas, we must un-
derstand the elements of Bs in the set of integers 1,2, · · · ,130, as 130 = ⌊103(3−

√
3)⌋. We have ⌊27(3+√

3)⌋ = 127,⌊28(3+
√

3)⌋ = 132. For any non-negative integer k, there are either 3 or 4 elements of Br

strictly between ⌊k(3 +
√

3)⌋ and ⌊(k + 1)(3 +
√

3)⌋, since 4 < 3 +
√

3 < 5. Thus, the sequence 0,⌊(3 +√
3)⌋, · · · ⌊27(3 +

√
3)⌋ · · ·⌊28(3 +

√
3)⌋ partitions Br ∩ {1,2, · · · ,132} into 28 classes in the obvious way.

Since |Br ∩{1,2, · · · ,132}|= 132−28 = 104, the case of “3 elements between” (resp. “4 elements between”)
occurs for exactly 8 (resp. exactly 20) classes. By Lemma 2, and the above observation, a “3 elements between”
(resp., a “3 elements between”) class contributes the terms 12,22,12 (resp. the terms 12,22,32,12) to the sum in
the problem statement. Here, the terms are listed in the order corresponding to writing the elements of a class
in increasing order. Hence,

104

∑
k=1

(
⌊k(3−

√
3)⌋−

⌊⌊
(2−

√
3)(k+1)

⌋
· (3+

√
3)
⌋)2

= (12 +22 +12) ·8+(12 +22 +32 +12) ·20 = 348.

The desired sum is indexed on k = 0,1, · · · ,103. The term arising from k = 104 contributes 12 to the above
sum, as ⌊104(3−

√
3)⌋+1 = 132 = ⌊28(3+

√
3)⌋. The term arising from k = 0 contributes nothing. Thus, the

answer is 347 .

Problem 13. Let N be the number of distinct tuples (x1,x2, . . . ,x46) of positive integers with x1,x2, . . . ,x46 ≤ 88
such that the remainder when x35

1 +x35
2 + · · ·+x35

46 is divided by 2024 is 253. Compute the remainder when N is
divided by 46.

Proposed by Justin Lee

Solution: 40 .
If a tuple (x1, . . . ,x46) is a solution to the above congruence, then so is (xi, . . . ,x45+i) (1 ≤ i ≤ 46) where indices
are taken modulo 46; that is, cyclic shifts of a solution are also solutions. Thus, we may form a partition on the
set of solutions to the desired congruence, where two solutions lie in the same partition class if and only if one
is a cyclic shift of the other. It suffices to find the number of solutions that have fewer than 46 distinct cyclic
shifts.
Consider any 46-tuple x := (x1, . . . ,x46). Let d be the smallest positive integer such that the cyclic shift
(x1+d , . . . ,x46+d) of x equals x. Then, for any cyclic shift (x1+k, . . . ,x46+k) (k an integer) with (x1+k, . . . ,x46+k) =
x, observe that k is necessarily a multiple of d. Thus, d | 46, and the number of distinct cyclic shifts of a x is 46

d ,
a divisor of 46. If x has 1 or 23 distinct cyclic shifts, then we must have xi = xi+23 for all i. However, this would
mean that x35

1 + · · ·+ x35
46 is even, so that x is not a solution of the above congruence. In the case where x has

exactly 2 distinct cyclic shifts, we have that x1 = x3 = . . .= x45 and x2 = x4 = . . .= x46. Hence, the question re-
duces to counting the number of distinct pairs (a,b) of positive integers with a,b ≤ 88 and 23(a35 +b35)≡ 253
(mod 2024), which is equivalent to a35 +b35 ≡ 11 (mod 88). Note that any solution to this latter congruence
has a,b distinct.
By the Chinese remainder theorem, the number of solutions to a35 +b35 ≡ 11 (mod 88) equals the product of
the number of solutions of a35 +b35 ≡ 3 (mod 8) (0 < a,b ≤ 8) and the number of solutions of a35 +b35 ≡ 0
(mod 11) (0 < a,b ≤ 11). First, we count solutions modulo 8. Recall that for an integer n coprime to 8, the
multiplicative order modulo 8 is either 1 or 2, with the former case occurring precisely with n ≡ 1 (mod 8).
Thus, if a35 +b35 ≡ 3 (mod 8), then one of a or b must be even, in which case the other must be congruent to
3 modulo 8, yielding 4 ·2 = 8 solutions.
Now, we count solutions modulo 11. Recall that the congruence n2 ≡ 1 (mod 11) has 2 solutions (mod 11):
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n =±1. Thus, given a35 +b35 ≡ 0 (mod 11) (0 < a,b ≤ 11), Fermat’s little theorem shows a35 (and also b35)
can only be congruent to −1, 0, or 1: if a ̸≡ 0 (mod 11), then (a35)2 ≡ a70 ≡ 1 (mod 11). Notice n35 ≡ n5 ≡−1
(mod 11) for exactly 5 of the non-zero residues n ∈ {1,2, . . . ,10} modulo 11; an easy way to see this is the
fact n5 ≡±1 (mod 11) if and only if (−n)5 ≡∓1 (mod 11). The case where both a35,b35 are congruent to 0
(mod 11) gives 1 solution, whereas the case where one of a35,b35 is 1 (mod 11) and the other is −1 (mod 11)
gives 2 · 5 · 5 = 50 solutions. So the modulo 11 case yields 50+ 1 = 51 total solutions. All told, we obtain
8 ·51 ≡ 408 ≡ 40 (mod 46) solutions to the (mod 88) congruence.

Problem 14. Let ABC be an acute triangle with AC > AB. Let D,E, and F be the feet of the altitudes from
A,B, and C, onto BC,CA and AB, respectively. Let K be the intersection of EF and AD, and let I be the
intersection of EF and BC. Let W be a point on ray

−→
BF such that ∠IWF = ∠FWE. Suppose AKBI is cyclic

and cos(∠BCA) = 2
5 . Find WB

WI .

Proposed by August Chen

Solution:
7
√

15−3
√

35
10

.

CB

A

D

E
F

I

K

W

Let H be the orthocenter of ABC. Notice AKBI cyclic implies

∡BAK = ∡BIK = ∡CBE −∡FEB = ∡DAC−∡BAH,

i.e. 2B−C = 90◦ (using the usual notation for the angles of triangle ABC). Furthermore:
Claim 1. The quadrilateral WIBE is cyclic.

Proof 1. Let W ′ = (EBI)∩BF where W ′ ̸= B. Observe W is unique: it is the second intersection of
−→
BF with

the Apollonius circle determined by segment IE and point F . Thus, it is enough to show W ′ =W . To this end,
first note ∡BIE = ∡BAH = ∡FEB = ∡IEB, where the first equality comes from AKBI cyclic. Then, W ′IBE
cyclic implies ∡IW ′F = ∡FW ′E, so W ′ =W .
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From here, it follows by ∡WBI = ∡WEI that △WIB ∼△WFE. We compute

WB
WI

=
WE
WF

=
IB
IF

=
sinC
sinB

=
sinC

sin(45◦+C/2)
=

2sinC√
cosC+1+

√
−cosC+1

,

so the answer is
2
√

21
5

· 1√
7
5 +
√

3
5

=
2
√

105(
√

7−
√

3)
20

=
7
√

15−3
√

35
10

.

Problem 15. A function f : {1,2,3,4,5,6,7} → {2,3,4,5,6} is called roughly monotonic if for every integer
2 ≤ k ≤ 5 in which there is some integer 1 ≤ a ≤ 7 with f (a) = k, then there exist integers 1 ≤ a0 < b ≤ 7 such
that f (a0) = k, f (b) = k+1. Compute the number of roughly monotonic functions f .

Proposed by Brian Yang

Solution: 4919 .
Let us consider roughly monotonic functions f : [n] → [n] ([n] := {1,2, . . . ,n}) “on n,” where we let k range
over 1 ≤ k ≤ n−1. Write any function f as a sequence f := ( f (1), f (2), . . . , f (n)) The main claim is:

Claim 1. The set of all roughly monotonic functions ( f (1), f (2), . . . , f (n)) are in bijection with the set of all
permutations (σ(1),σ(2), . . . ,σ(n)) of {1,2, . . . ,n}.

Proof 1. We propose two mappings: one that constructs a roughly monotonic function f on n, given any
permutation σ := (σ(1),σ(2), . . . ,σ(n)), and the other that builds a permutation σ of [n], given any roughly
monotonic function f := ( f (1), f (2), . . . , f (n)).
Given any permutation σ := (σ(1),σ(2), . . . ,σ(n)), construct f as follows. Initially, f is undetermined every-
where. At step 1, find 1 ≤ i1 ≤ n such that σ(i1) = 1, and set f (i1) = n (this determines f at one value, namely
i1 = σ−1(1)). At step 1 < j ≤ n, say we have determined f at the j−1 values σ−1(1),σ−1(2), . . . ,σ−1( j−1),
i.e. the positions of 1,2, . . . , j−1 in σ . Let m be the value of f at σ−1( j−1). Then, if i j =σ−1( j)>σ−1( j−1),
i.e. j−1 precedes j in σ , then we set f (i j) = m. Otherwise, j precedes j−1 in σ , and we set f (i j) = m−1.
As an example, given the permutation (7,2,4,1,5,6,3), we obtain the function f := (4,6,5,7,5,5,6).
Note that for any m ∈ [n], the pre-image f−1(m) describes the positions of an increasing subsequence of
(σ(1),σ(2), . . . ,σ(m)) consisting of consecutive integers (possibly empty). To be precise: f−1(n) are the
positions of 1,2, . . . , l in σ , for some l ≥ 1. Moreover, if m < n and f−1(m) is non-empty, then by construction,
f−1(m) are the positions of some 1 < j, j+1, . . . , j+ l ≤ n for some l ≥ 0 in σ . In particular, it is necessary that
j precedes j−1 in σ , else j−1 ∈ f−1(m). As a result, j−1 ∈ f−1(m+1). This verifies f is indeed roughly
monotonic.
Now, given any roughly monotonic function f := ( f (1), f (2), . . . , f (n)), construct σ as follows. Initially, σ is
undetermined anywhere. At step 1, find the smallest 1 ≤ i1 ≤ n such that f (i) achieves the maximum of f , and
set σ(i1) = 1. At step 1 < j ≤ n, assume that we have determined σ at the j−1 distinct values i1, i2, . . . , i j−1.
Then, find the smallest 1 ≤ i j ≤ n such that i j /∈ {i1, i2, . . . , i j−1}, and f (i j) achieves the maximum of the
restricted function

f |[n]\{i1,i2,...i j−1} : [n]\{i1, i2, . . . i j−1}→ [n].

Set σ(i j) = j. It is clear that σ is a permutation.
Now, we check that the two mappings σ 7→ f , f 7→ σ are inverse of each other. First, given a permutation σ ,
note that we construct f at step j by determining its value at i j := σ−1( j), for each 1 ≤ j ≤ n. However, in this
construction of f , observe that i j is indeed the smallest value such that i j /∈ {i1, i2, . . . i j−1}, and f (i j) achieves
the maximum of the restriction f |[n]\{i1,i2,...i j−1}. That is, the two ways we defined the i j’s are the same, in the
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sense that these definitions are “preserved” by both of the above mappings. Since σ−1( j) = i j, the composition
of σ 7→ f with f 7→ σ is precisely the identity.
On the other hand, given a roughly monotonic function f , say that we construct a permutation σ from f ,
and then a roughly monotonic function f from σ ; we must check f = f ′. Once again, we record the values
i j := σ−1( j), 1 ≤ j ≤ n. Then, each i j is the smallest value satisfying the achieving the maximum of the
restriction condition for both functions f and f ′! Since f (i1) (resp. f ′(i1)) is the maximum of f (resp. f ′), we
must have f (i1) = n (resp. f ′(i1) = n), else f (resp. f ′) cannot be roughly monotonic. Assume inductively
that we have equality f (i j−1) = f ′(i j−1) for some j ≥ 2. If i j > i j−1, then the achieving the maximum of
restriction condition forces f (i j)≤ f (i j−1), f ′(i j)≤ f ′(i j−1), but the roughly monotonic condition implies that
we must have f (i j) = f ′(i j) = f (i j−1) = f ′(i j−1). Otherwise, if i j < i j−1, then the achieving the maximum of
restriction condition forces f (i j)< f (i j−1), f ′(i j)< f ′(i j−1), but then the roughly monotonic condition forces
f (i j) = f ′(i j) = f (i j−1)− 1 = f ′(i j−1)− 1. This verifies that the composition of f 7→ σ with σ 7→ f is the
identity.

In light of the above claim, and in the problem statement, the restriction of the codomain to {2,3, . . . ,6} implies
we must compute the number of roughly monotonic functions f : [7]→ [7] such that the range of f is of size at
most 5. Towards complementary counting, we must count permutations of [7] that split into 6 or 7 increasing
subsequences (in concomitance with the definition of the mapping σ 7→ f ). In the case of 7 increasing subse-
quences, each increasing subsequence is a singleton, and so we just get one permutation σ = (7,6,5,4,3,2,1).
In the case of 6 increasing subsequences, one of the increasing subsequences is of length 2, all of the others
are length 1. There are 6 possible cases for the length 2 subsequence in σ : (1,2),(2,3), . . . ,(6,7). We may do
casework over the possible length 2 subsequences in σ :

• (1,2): The collection 7,6,5,4,3 are permuted in that order by σ . Hence, we must have i2 = 7, and any
1 ≤ i1 ≤ 6 is sufficient. This yields

(6
1

)
= 6 permutations.

• (2,3): Here, the collection 7,6,5,4 are permuted in that order by σ . Thus, it is necessary i3 ≥ 6, obtaining
two (sub)-cases: The first case is that i3 = 7, in which 1 ≤ i2 < i1 ≤ 6 is necessary and sufficient. In the
second case, we have i3 = 6, forcing i1 = 7, in which case any 1 ≤ i2 ≤ 5 is sufficient. This yields(6

2

)
+
(5

1

)
= 20 permutations.

• (3,4): Here, the two collections 7,6,5 and 2,1 are permuted in that order. Thus, it is necessary i4 ≥ 5,
obtaining three (sub)-cases: The first case is that i4 = 7, in which 1 ≤ i3 < i2 < i1 ≤ 6 is necessary and
sufficient. In the second case, we have i4 = 6, forcing i1 = 7, in which case any 1≤ i3 < i2 ≤ 5 is sufficient.
In the third case, we have i4 = 5, forcing i2 = 6, i1 = 7, in which case any 1 ≤ i3 ≤ 4 is sufficient. This
yields

(6
3

)
+
(5

2

)
+
(4

1

)
= 34 permutations.

Now, observing symmetry, the cases (4,5),(5,6),(6,7) yield the same number of permutations as the cases
(1,2),(2,3),(3,4), respectively. There are 7!= 5040 permutations in total, so the number of roughly monotonic
functions requested by the problem statement is 5040−1−2(6+20+34) = 4919 .
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