
Proof Round 2023-2024 Solutions
Problem 1. [5] Alice and Bob play a game on a m × n chessboard (m ≥ 1,n ≥ 3). They alternate turns,
with Alice going first. On each turn, a player may place either a domino, covering exactly 2 squares on the
chessboard, or a 3×1 tromino, covering exactly 3 squares on the chessboard, such that the newly placed piece
does not overlap any previously placed pieces. Pieces may be placed either horizontally or vertically. Whoever
cannot play a legal move at some point loses. For each (m,n), find who has the winning strategy.

Proposed by Eduardo Nascimento

Solution: Alice has the winning strategy if at least one of m,n are odd; otherwise, Bob has the winning strategy.
We make a symmetry argument. If mn is odd, the board has a central square. Alice can play a tromino centered
at this square on the first turn, and then on subsequent turns, play the reflection of Bob’s previous move through
the center of the board. Thus, Alice wins the game.
If exactly one of m,n is odd, then the center of the board (as a rectangle) lies on the center of an edge incident
to two adjacent squares. Alice can place a domino covering these two adjacent squares on the first turn, and
then on subsequent turns, play the reflection of Bob’s previous moves through the center of the board. Thus,
Alice wins the game.
Otherwise, if m,n are both even, then the center of the board (as a rectangle) lies at a point where four squares
of the chessboard meet, and so for every one of Bob’s moves, he may play the reflection of Alice’s previous
move through the center of the board. So Bob wins the game.
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Problem 2. [10] Let X be a finite set, and let P(X) be the power set of X ; that is, P(X) is the set of all subsets
of X . For instance, if X = {a,b,c}, then

P(X) = { /0,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}.

In particular, if |X | is the cardinality of X , then the cardinality of P(X) is 2|X |.
A subset Σ ⊆ P(X) is called an algebra (on X) if it satisfies the following 3 properties:

(1) (Universal set) X ∈ Σ.
(2) (Closed under complement) If A ∈ Σ, then X \A ∈ Σ.
(3) (Closed under union) If A1,A2 ∈ Σ, then A1 ∪A2 ∈ Σ.

For instance, let X = {a,b,c}. Then, P(X) itself is an algebra (this is the largest possible algebra on X). As a
non-trivial example,

{ /0,{a,b},{c},{a,b,c}}

is also an algebra on X .
(a) [1] Give another two examples of algebras on the set X = {a,b,c}. (No proof required)
(b) [2] Let X = {1,2, . . . ,k} for some integer k ≥ 3. Suppose Σ ⊆P(X) is an algebra such that the sets {1,2}

and {2,3} are in Σ. Show that the one-element sets {1},{2},{3} are in Σ.
(c) [7] Prove that for any finite set X , the cardinality of any algebra Σ ⊆ P(X) equals 2n for some positive

integer n. Hint: Consider the following definition. A partition of X (with k parts) is a collection of
non-empty subsets C1,C2, . . . ,Ck of X such that

⋃k
i=1Ci = X, and Ci ∩C j = /0 for every 1 ≤ i < j ≤ k. In

particular, every element of X lies in exactly one part.

Proposed by Brian Yang

Solution (a): The subsets { /0,{a,b,c}}, { /0,{a},{b,c},{a,b,c}} of P(X) are algebras on X (the first is called
the trivial algebra).
Solution (b): First observe for any algebra Σ on an arbitrary X that Σ being closed under complement and union
implies Σ is also closed under intersection: that is, if A1,A2 ∈ Σ, then

A1 ∩A2 = X \ ((X \A1)∪ (X \A2)) ∈ Σ,

where the equality above is DeMorgan’s law.
Now return to the problem statement. By closed under intersection {2}= {1,2}∩{2,3} ∈ Σ. By closed under
complement, {1,3,4, . . . ,k} = X \ {2} ∈ Σ. By closed under intersection, {1} = {1,2}∩ {1,3,4, . . . ,k} ∈ Σ.
Similarly argue {3} ∈ Σ.
Solution (c): Let Σ be an algebra on X . For any x ∈ X , let Ax be the intersection of all sets in Σ containing x.
Then, Ax ∈ Σ, and by construction must be the smallest subset of X (with respect to inclusion) such that x ∈ Ax

and Ax ∈ Σ. Observe that no proper non-empty subset of Ax is in Σ. Indeed, assume on the contrary B ⊆ Ax

is proper and non-empty, with B ∈ Σ. If x ∈ B, then this contradicts minimality of Ax. Otherwise, x ∈ Ax \B,
where Ax \B ∈ Σ by closure under complement and intersection, again contradicting minimality of Ax.
Let A be the finite collection of sets {Ax | x ∈ X} (for x,y ∈ X distinct, we may have Ax = Ay). Note that
distinct sets A1,A2 ∈ A are disjoint, otherwise B = A1 ∩A2 ∈ Σ is non-empty and contained properly in either
A1 or A2, a contradiction. Hence, A is a partition of X , say with n ≥ 1 parts. Furthermore, for any set A ∈ Σ

and any x ∈ X , either Ax ⊆ A or Ax ∩A = /0 (in other words, A is a union of finitely many sets in A ); if not, then
B = Ax ∩A ∈ Σ is non-empty and contained properly in Ax ∈ A , a contradiction. Thus, by closure under union,
Σ consists of precisely all unions of subcollections of A (including the empty subcollection), and two different
subcollections of A certainly give rise to two distinct subsets of X . Conclude |Σ|= 2n, as requested.
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Problem 3. [13] Let m ≥ 1 be an integer. An mth root of unity is a complex number z such that zm = 1.
An mth root of unity z is called primitive if zm = 1, and zd ̸= 1 for every integer 1 ≤ d < m. For instance,
w := cos(8π

6 )+ isin(8π

6 ) is a 6th root of unity, but not a primitive 6th root of unity. It is, however, a primitive
3rd root of unity.

(a) [2] Find, with proof, the product of all primitive mth roots of unity (your answer may depend on m).
(b) [4] Prove that the sum of all primitive mth roots of unity is non-zero if and only if m is squarefree, i.e. m

is not divisible by the square of any prime number.
(c) [7] Suppose that m is squarefree. Prove that every mth root of unity z can be written as a finite sum or

difference of primitive mth roots of unity. In other words, prove that there is some integer k ≥ 1, primitive
mth roots of unity z1,z2, . . . ,zk (not necessarily mutually distinct), and ai ∈ {−1,+1} for each 1 ≤ i ≤ k,
such that

z = a1z1 +a2z2 + · · ·+akzk.

(It turns out that the converse is true as well. That is, if m ≥ 1 is a not a square-free integer, then there is
some mth root of unity z which cannot be written as a finite sum or difference of primitive mth roots of
unity. This actually follows from (b) and a bit of linear algebra and field theory.)

Proposed by Brian Yang

Solution (a): For m = 1,2 the product of all primitive mth roots of unity is obviously 1,−1, respectively.
For m ≥ 3, observe any primitive mth root of unity z is non-real, so z ̸= z. Furthermore, for any integer d, we
have zd = 1 if and only if zd = 1. Hence, the primitive mth roots of unity come in complex conjugate pairs. The
product of a complex number on the unit circle with its conjugate is 1, so the product of all primitive mth roots
of unity is precisely 1.
Solution (b): For any integer n ≥ 1, denote by σn the sum of all primitive nth roots of unity, and Φn(x) the nth
cyclotomic polynomial.
In general, prime factorize m= pα1

1 pα2
2 . . . pαs

s , and let q= p1 p2 . . . ps be the product of the distinct prime divisors
of m. Claim Φm(x) = Φq(x

m
q ). Indeed, the degree of Φq(x

m
q ) is

m
q
·ϕ(q) =

s

∏
j=1

pα j−1
j ϕ(p j) =

s

∏
j=1

ϕ(pα j
j ) = ϕ(m),

and any primitive mth root of unity z is a root of Φq(x
m
q ), as z

m
q is a primitive qth root of unity. Thus,

Φm(x),Φq(x
m
q ) are both monic, have the same set of roots, and the same degree ϕ(m). Since Φm(x) actu-

ally has no repeated roots, the claim follows. Consequently, if m is not squarefree, then m
q > 1, so by Vieta, the

sum of the roots of Φm(x) = Φq(x
m
q ), i.e. the sum of the primitive mth roots of unity, is 0.

On the other hand, suppose m is squarefree, so that m = p1 p2 . . . ps (s distinct prime divisors). We claim
σm = (−1)s. Induct on s. For s = 0, the claim is obvious. The base case s = 1, i.e. m = p1 is a prime, is also
easy, as −1 is the sum of the p1th roots of unity not equal to 1 (e.g. by Vieta), i.e. the sum of the primitive p1th
roots of unity.
For the inductive step, assume s ≥ 2, and the requested claim has been proven for positive integers with up to
s− 1 distinct prime factors. Recall that the set of all mth roots of unity is the disjoint union of the sets of all
primitive dth roots of unity, as d ranges over all divisors of m. For such d, if d has 0 ≤ t < s distinct prime
divisors, the induction assumption implies σd = (−1)t . Furthermore, for any such 0 ≤ t < s, there are

(s
t

)
divisors d of m with exactly t distinct prime divisors. Since the sum of all mth roots of unity is 0, we deduce
the equation

0 =
s−1

∑
t=0

(−1)t
(

s
t

)
+σm.
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In lieu of the combinatorial identity (1−1)s = ∑
s
t=0(−1)t

(s
t

)
, we conclude σm = (−1)s, as requested.

Solution (c): Again, write m = p1 p2 . . . ps; induct on s. The base case s = 1, i.e. m = p1 is a prime, is trivial
(and has been verified in the proof of (b)).
For the inductive step, assume s ≥ 2, and the requested claim has been proven for positive integers with up to
s− 1 distinct prime factors. Trivially, any primitive mth root of unity can be expressed as an integral linear
combination of primitive mth roots of unity. Now, any other mth root of unity z is a primitive Dth root of unity
for some D properly dividing m. Then, there exists d a proper divisor of m such that D | d and m equals d times
a prime number. By the inductive assumption, z is an integral linear combination of primitive dth roots of unity.
Having fixed this notation, it suffices to prove that any primitive dth root of unity may be written as an integral
linear combination of primitive mth roots of unity.
WLOG assume p1d = m. Let r1 = p2 . . . ps. Notice that any arbitrary primitive dth root of unity is of the form
e

2πi·r2
m , where r2 is a residue (mod m) where p1 | r2 and pk ∤ r2 for all 2 ≤ k ≤ s. Compute

p1−1

∑
j=0

e
2πi·(r1 j+r2)

m = e
2πi·r2

m ·

(
p1−1

∑
j=1

e
2πi·r1 j

m

)
+ e

2πi·r2
m = e

2πi·r2
m ·

(
p1−1

∑
j=0

e
2πi· j

p1

)
= 0

=⇒ e
2πi·r2

m =−
p1−1

∑
j=1

e
2πi·(r1 j+r2)

m .

Since p2, . . . , ps ∤ r1 j + r2 for all integers j, and p1 | r1 j + r2 if and only if p1 | j, we deduce e
2πi·(r1 j+r2)

m is
a primitive mth root of unity if and only if p1 ∤ j. Therefore, the above equation writes e

2πi·r2
m , an arbitrary

primitive dth root of unity, as a sum and difference of primitive mth roots of unity, implying the conclusion.
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Problem 4. [7] Professor Tamuz is teaching a class containing some finite number of students (at least 1).
Every pair of students in class are either friends or not. Prove that Professor Tamuz may partition the students
in the class into some number of groups N ≥ 1, labelled 1,2, . . . ,N, and pick N student representatives, one
from each group, such that:

• No pair of students belonging to the same group are friends with each other.
• For any two different groups i and j, the representative of group i is friends with some student belonging

to group j.

Proposed by Brian Yang

Solution: Let G = (V,E) be the obvious graph-theoretic interpretation: V is the set of students in class and E
the set of friendships between pairs of students. For N ≥ 1, recall that an N-coloring of G is a map c : V →
{1,2, . . . ,N}. An N-coloring c is called proper if for any edge vw ∈ E, we have c(v) ̸= c(w). We say that N is
the chromatic number of G if N is the smallest positive integer such that there exists a proper N-coloring of G.
Now, suppose N ≥ 1 is the chromatic number of G, and let c : V → {1,2, . . . ,N} be any proper N-coloring of
G. In fact, let V :=V1 ⊔·· ·⊔VN be the partition induced by c, i.e. for v ∈V and 1 ≤ i ≤ n, we have v ∈Vi if and
only if c(v) = i. We claim that for every 1 ≤ i ≤ N, there is a vertex vi ∈Vi such that for every 1 ≤ j ≤ n, j ̸= i,
vi is adjacent to some w ∈ Vj. With the vi’s taking the role of the student representatives, this will verify that
the partition V1 ⊔ ·· · ⊔VN witnesses that it is indeed possible for Professor Tamuz to split the students in class
in groups and then pick student representatives in the way described in the problem statement.
Towards a contradiction, say that for every v ∈ VN (WLOG), we may pick 1 ≤ j ≤ N − 1 (depending on v)
such that v is not adjacent to any vertices in Vj. Then, define an auxiliary coloring c′ : V → {1,2, . . . ,N − 1}
by c′(v) = c(v) for every v ∈V1 ⊔·· ·⊔VN−1 and c′(v) = j for every v ∈VN . Given 1 ≤ j ≤ N −1, observe that
every vertex v ∈V that is c′-colored by j is either in Vj or in VN , and in the latter case, v is not adjacent to any
vertices w ∈Vj. Hence, any two vertices in V that are c′-colored by j are not adjacent, so c′ is in fact a proper
coloring. But this is a contradiction of N being the chromatic number.
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Problem 5. [10] Say a positive integer x is power-close if there exist positive integers k ≥ 4,m ≥ 2 such that
there is some 0 ≤ i ≤ m−1 with km dividing x− i. Prove that there are infinitely many positive integers that are
not power-close.

Proposed by Eduardo Nascimento

Solution: Say x is k,m power-close, if there is i as in the problem statement. Then, for each k,m, the density of
k,m power-close positive integers is obviously m

km . By the union bound, this implies that the (upper) density of
all power-close integers is at most

∑
k≥4

∑
m≥2

m
km .

Let f (x) = 1
1−x = ∑

∞
n=0 xn if |x|< 1. Then,

x
(1− x)2 = x f ′(x) =

∞

∑
m=1

mxm

on x ∈ (−1,1), and so taking x = 1
k , k ≥ 4 yields

∑
m≥2

m
km =

k
(k−1)2 −

1
k
=

2k−1
k(k−1)2 <

2
(k−1)2 .

Then,

∑
k≥4

∑
m≥2

m
km < ∑

k≥4

2
(k−1)2 = ∑

k≥3

2
k2 = 2

(
π2

6
−1− 1

4

)
⪅ 0.79.

Conclude that the set of non power-close positive integers has positive lower density, and hence is infinite.
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Problem 6. [15] Find all positive real numbers r,c with r > 1 satisfying the following: there exists a positive
integer N such that ⌊crn⌋ is a perfect cube for all positive integers n ≥ N.

Proposed by Jeck Lim

Solution: The solutions are r = a3 for some positive integer a > 1, and c = b3

rm for some integers b ≥ 1,m ≥ 0.
It is easy to see that these values work.
Now, on the other hand, fix r,c,N such that ⌊crn⌋ is a perfect cube for all positive integers n ≥ N. Fix an
integer N1 ≥ N sufficiently large such that for all n ≥ N1, we have crn = a3

n + εn for some positive integer an

and 0 ≤ εn < 1, and an+1 ≥ an. Then, a3
n+1 + εn+1 = ra3

n + rεn for all n ≥ N1, so an → ∞ and(
an+1

an

)3

− r =
rεn − εn+1

a3
n

= O(a−3
n ) as n → ∞.

Now, observe for x,y ≥ 1 that x2 +xy+y2 ≥ 1 and x3 −y3 = (x2 +xy+y2)(x−y), so that |x−y| ≤ |x3 −y3|. In
the current situation, this yields

an+1

an
− 3
√

r = O(a−3
n ),

an+2

an+1
− 3
√

r = O(a−3
n+1) as n → ∞.

In fact, as an → ∞ as n → ∞, the expression an+1
an

− 3
√

r = O(a−3
n ) implies for any ε > 0 that

∣∣∣an+1
an

− 3
√

r
∣∣∣< ε for

all sufficiently large n. Thus, an = Θ(an+1) and vice versa as n → ∞. Consequently, taking the difference of the
above two expressions yields

a2
n+1 −anan+2

anan+1
= O(a−3

n+1) as n → ∞

Given n, if the LHS is nonzero, then it is at least 1
anan+1

in absolute value. Since 1
anan+1

is obviously not O(a−3
n+1)

as n → ∞, it follows there is some integer N2 ≥ N1 so large such that a2
n+1−anan+2

anan+1
= 0, i.e. an+2

an+1
= an+1

an
for all

n ≥ N2. Since 1
an+1an

→ 3
√

r as n → ∞, in fact we must have an+1
an

= 3
√

r for n ≥ N2. Hence, rεn = εn+1 for n ≥ N2.
If εn > 0 for n ≥ N2, then for sufficiently large integers m, we have εn+m = rmεn > 1, a contradiction. Thus,
εn = 0 for n ≥ N2, so crn = a3

n and an+m = r
m
3 an for all n ≥ N2,m ≥ 0. Given n ≥ N2, for an+m to be an integer

for all m ≥ 0, we must have r be a perfect cube, and then c =
a3

N2
rN2

is the of the desired form.
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Problem 7. [20] Let ABC be a scalene triangle with incenter I and circumcircle Γ. Let M be the midpoint of
arc B̂C of Γ not containing A, and let X be a point on BC such that IX = XM. The incircle of ABC is tangent
to BC at D, and denote by I′ the reflection of I over D. Let T lie on Γ such that AT ⊥ T I′. Finally, T D meets Γ

again at P. Prove that the circumcircle of triangle IXP is tangent to AI.

Proposed by Brian Yang

Solution: Denote by Ψ the inversion about the circle (BIC) (recall by the incenter-excenter lemma that this
circle has center M). It turns out this will be the main theme of the problem! Let MI′ meet Γ at S ̸= M.

A

B
C

I

I′

N

M

O

Q

S

S′

We begin with the following claim, independent of most of the problem setup:

Claim 1. AI = SI.

Proof 1. Let O be the center of Γ, and S′ the antipode of S on Γ. Notice that the inversion Ψ fixes I, swaps S
and Q := SM∩BC, and swaps O and N, the symmetric of M over BC. Since Q, I′,M are collinear, so are Q, I,N
by reflection, whence S,M, I,O are concyclic. Thus, ∡MIO = ∡MSO = ∡MSS′ = ∡MAS′, so IO ∥ AS′. Then,
AS′ ⊥ AS implies IO ⊥ AS, and this yields the claim.

Now, let A′ be the antipode of A on Γ (thus, T is the second point A′I′ cuts Γ).
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A

B
C

I

I′

M

S

D D1

A′

K P

T

X

Claim 2 (Sharky-Devil). The lines A′I and MD meet on Γ.

Proof 2. Let K be the second point A′I meets Γ; we need to show K,D,M are collinear. In fact, we will show
that K,D are swapped by the inversion Ψ. Since Ψ sends Γ to BC, we have Ψ(A) = AM∩BC =: D1, so that Ψ

swaps the circles (AI) and (ID1). Now, notice D lies on (ID1) by ID ⊥ BC. Since K lies on (AI) by A′K ⊥ KA,
we deduce D is the image of K under Ψ. This verifies the requested collinearity.

Having done all this work, we are ready to say things about P:

Claim 3. PI = MI.

Proof 3. By Claim 1 and power of a point at I, it suffices to prove P, I,S are collinear. But this holds by the
converse of Pascal’s theorem on MSPTA′K (cf. Claim 2).

Claim 4. M,X ,P are collinear.

Proof 4. let X ′ = BC∩MP. We have MI2 = MX ′ ·MP since Ψ swaps P and X ′ (or by the Shooting lemma).
Thus, △MX ′I ∼ △MIP, so from PI = MI (Claim 3) follows IX ′ = X ′M. By uniqueness of X , conclude
X = X ′.

In particular, MI2 = MX ·MP, so (IXP) is indeed tangent to AM.
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