
CMM 2024 Integration Bee Qualification Test Solutions

Problem 1.
∫ 1

0
(4x−6x2/3) dx

Proposed by Ritvik Teegavarapu

Solution:
−8
5

This is a simple use of the power rule for integrals.∫ 1

0
(4x−6x2/3) dx =

(
4 · x1+1

1+1
− 6 · x 2

3+1

2
3 +1

)∣∣∣∣1
0
=

(
2x2 − 18

5
· x5/3

)∣∣∣∣1
0
= 2 · (1)2 − 18

5
·15/3 = 2− 18

5
=

−8
5

Problem 2.
∫ 4

1

x
√

x−1
x

dx

Proposed by Ritvik Teegavarapu

Solution:
14
3
−2ln(2)

We begin by splitting the integrand into two fractions as follows.∫ 4

1

x
√

x−1
x

dx =
∫ 4

1

(√
x− 1

x

)
dx

We can now integrate separately as follows.∫ 4

1

(√
x− 1

x

)
dx =

∫ 4

1

√
x dx−

∫ 4

1

1
x

dx =

(
2x3/2

3

)∣∣∣∣4
1
− (ln |x|)

∣∣∣∣4
1

We now evaluate each of these expressions as follows.(
2x3/2

3

)∣∣∣∣4
1
− (ln |x|)

∣∣∣∣4
1
=

(
2 ·43/2

3
− 2 ·13/2

3

)
− (ln(4)− ln(1)) =

(
16
3
− 2

3

)
− (2ln(2)−0) =

14
3
−2ln(2)

Problem 3.
∫

π/4

0

2tan(θ)
1+ tan2(θ)

dθ

Proposed by Ritvik Teegavarapu

Solution:
1
2

We first employ the variant of the Pythagorean identity that states the following.

1+ tan2(θ) = sec2(θ)

Therefore, the integrand simplifies as follows.∫
π/4

0

2tan(θ)
1+ tan2(θ)

dθ =
∫

π/4

0

2tan(θ)
sec2(θ)

dθ =
∫

π/4

0
2tan(θ)cos2(θ) dθ

1



Expanding the definition of tangent and double-angle identity, we have the following.∫
π/4

0
2 ·
(

sin(θ)
cos(θ)

)
· cos2(θ) dθ =

∫
π/4

0
2sin(θ)cos(θ) dθ =

∫
π/4

0
sin(2θ) dθ

We can now integrate regularly to obtain a final answer as follows.

∫
π/4

0
sin(2θ) dθ =

−cos(2θ)

2
=

∣∣∣∣π/4

0
=

−cos(π/2)
2

+
cos(0)

2
= 0+

1
2
=

1
2

Problem 4.
∫

∞

1

e1/x

x2

Proposed by Ritvik Teegavarapu

Solution: e−1

To get rid of the exponent, we immediately consider the u-substitution of u = 1/x, which implies that du =
−1/x2 dx. Therefore, our integral becomes the following.∫

∞

1

e1/x

x2 =
∫ 0

1
−eu du =

∫ 1

0
eu du

Note that our bounds were transformed as follows.

u =
1
1
= 1 u =

1
∞

= 0

We can then evaluate this integral to get our final answer.

∫ 1

0
eu du = eu

∣∣∣∣1
0
= e1 − e0 = e−1

Problem 5.
∫ 2−1/4

0

2x√
1− x4

dx

Proposed by Ritvik Teegavarapu

Solution:
π

4

We first recognize that 2x is the derivative of x2, which means we can utilize the u-substitution of u = x2

as follows. ∫ 2−1/4

0

2x√
1− x4

dx =
∫ 2−1/2

0

du√
1−u2

Note that our bounds were transformed as follows.

u = 02 = 0

u =
(

2−1/4
)2

= 2−1/2

2



One can immediately recognize that this is the anti-derivative of arcsin(u), but we can show it here by consid-
ering the substitution u = sin(v), which makes du = cos(v) dv as follows.

∫ 2−1/2

0

du√
1−u2

=
∫ arcsin(2−1/2)

arcsin(0)

cos(v) dv√
1− sin2(v)

=
∫ arcsin(2−1/2)

0

cos(v) dv√
cos2(v)

=
∫ arcsin(2−1/2)

0

cos(v) dv
|cos(v)|

To determine if we need to consider sign in the denominator of the integrand, we must evaluate the upper bound
of the integral as follows.

arcsin
(

2−1/2
)
= arcsin

(
1√
2

)
= arcsin

(√
2

2

)
=

π

4

Since cos(v) is positive on the interval elicited by the bounds of the integral, we obtain the final answer as
follows. ∫

π/4

0

cos(v) dv
cos(v)

=
∫

π/4

0
dv = v

∣∣∣∣π/4

0
=

π

4
−0 =

π

4

Problem 6.
∫ 6

0
|x−3| dx

Proposed by Ritvik Teegavarapu

Solution: 9

This integral lends itself to a more geometric approach, in that the integrand can be decomposed into two
triangles. Specifically, we have that one of the triangles is sloping downward with m = −1 on the interval to
[0,3], and one of the triangles is sloping upward with m = 1 on the interval to [3,6].

Therefore, we have two triangles, one on each sub-interval. Each of the triangles has a base of 3 since the
sub-interval lengths are each 3, and height 3 since the y-intercept of the lines mentioned above is 3. Thus,
adding the areas of both of these triangles, we have the following.

9
2
+

9
2
= 9

The calculus-based approach is shown as follows.∫ 6

0
|x−3| dx =

∫ 3

0
−(x−3) dx+

∫ 6

3
(x−3) dx

∫ 3

0
−(x−3) dx =

(
3x− x2

2

)∣∣∣∣3
0
=

(
9− 32

2

)
−
(

0− 02

2

)
=

9
2∫ 6

3
(x−3) dx =

(
x2

2
−3x

)∣∣∣∣6
3
=

(
62

2
−3 ·6

)
−
(

3− 32

2

)
= 0−

(
−9
2

)
=

9
2∫ 6

0
|x−3| dx =

9
2
+

9
2
= 9

3



Problem 7.
∫ 2

−2

4+ sin(4x)
4+ x2 dx

Proposed by Ritvik Teegavarapu

Solution: π

We begin by splitting the integral as follows.∫ 2

−2

4+ sin(4x)
4+ x2 dx =

∫ 2

−2

4
4+ x2 dx+

∫ 2

−2

sin(4x)
4+ x2 dx

The former integral looks similar to that of the derivative of arctan(x), but we modify as follows.

∫ 2

−2

4
4+ x2 ·

1
4
1
4

dx =
∫ 2

−2

1

1+ x2

4

dx =
∫ 2

−2

1

1+
( x

2

)2 dx

This integral evaluates to the following.

∫ 2

−2

1

1+
( x

2

)2 dx = 2 · arctan
( x

2

)∣∣∣∣2
−2

= 2arctan(1)−2arctan(−1) = 2 · π

4
−2 · −π

4
= π

However, the latter integrand is odd (due to sin(4x)), which means that the integral becomes 0 across symmetric
bounds. ∫ 2

−2

sin(4x)
4+ x2 dx = 0

Therefore, our initial integral becomes the following.∫ 2

−2

4+ sin(4x)
4+ x2 dx = π +0 = π

Problem 8.
∫ 1

0

1
1+ 1

1+ 1
x

dx

Proposed by Ritvik Teegavarapu

Solution:
1
2
·
(

1+
ln(3)

2

)
We first seek to simplify this nested fraction as much as possible, by making a common denominator in the
most nested fraction as follows.∫ 1

0

1
1+ 1

x
x+

1
x

dx =
∫ 1

0

1
1+ 1

x+1
x

dx =
∫ 1

0

1
1+ x

x+1
dx

We repeat the same procedure once again to simplify.∫ 1

0

1
x+1
x+1 +

x
x+1

dx =
∫ 1

0

1
2x+1
x+1

dx =
∫ 1

0

x+1
2x+1

dx

4



We now formulate the numerator to take on the form of the denominator as follows.

x+1 =
2x+2

2
=

2x+1
2

+
1
2

Substituting this into the integrand and splitting, we have the following.∫ 1

0

2x+1
2 + 1

2
2x+1

dx =
∫ 1

0

(
2x+1

2 · (2x+1)
+

1
2 · (2x+1)

)
dx =

∫ 1

0

(
1
2
+

1
2 · (2x+1)

)
dx

Factoring out the common factor, we can now regularly integrate as follows.

1
2
·
(∫ 1

0

(
1+

1
2x+1

)
dx
)
=

1
2
·
(

x+
ln |2x+1|

2

)∣∣∣∣1
0
=

1
2
·
(

1+
ln |2 ·1+1|

2

)
− 1

2
·
(

0+
ln |2 ·0+1|

2

)
Simplifying, we have the following.

1
2
·
(

1+
ln |2+1|

2

)
− 1

2
·
(

ln |0+1|
2

)
=

1
2
·
(

1+
ln(3)

2

)

Problem 9.
∫ e2

e

(
ln(ln(x))+

1
ln(x)

)
dx

Proposed by Ritvik Teegavarapu

Solution: e2 ln(2)

To remove the nested natural logarithm, we consider the substitution x = eu, which makes dx = eu du. Thus,
our integral becomes the following.∫ e2

e

(
ln(ln(x))+

1
ln(x)

)
dx =

∫ 2

1

(
ln(ln(eu))+

1
ln(eu)

)
· (eu du) =

∫ 2

1

(
ln(u)+

1
u

)
· (eu du)

Note that our bounds were transformed as follows.

u = ln(e) = 1 u = ln(e2) = 2

Splitting the integral into two, we have the following equivalent form.∫ 2

1

(
ln(u)+

1
u

)
· (eu du) =

∫ 2

1
eu · ln(u) du+

∫ 2

1

eu

u
du

Since we do not know how to evaluate the latter integral, we evaluate the former using integration by parts, in
which we have the following.

a = ln(u) da =
1
u

du

db = eu du b = eu

Therefore, our integral becomes the following.∫ 2

1
eu · ln(u) du =

∫
a db = a ·b

∣∣∣∣2
1
−
∫ 2

1
b da = eu ln(u)

∣∣∣∣2
1
−
∫ 2

1

eu

u
du

5



This exactly cancels out with the latter integral, which allows to evaluate to get our final answer as follows.

∫ 2

1

(
ln(u)+

1
u

)
· (eu du) =

(
eu ln(u)

∣∣∣∣2
1
−
∫ 2

1

eu

u
du

)
+
∫ 2

1

eu

u
du = eu ln(u)

∣∣∣∣2
1
= e2 ln(2)−e1 ln(1) = e2 ln(2)

Problem 10.
∫ 2

1

x3 + x−3

x1 + x−1 dx

Proposed by Ritvik Teegavarapu

Solution:
11
6

Let us recall the expansion of the sum of cubes as follows.

(a+b)3 = a3 +3a2b+3ab2 +b3

If we substitute a = x and b = x−1, we have the following.(
x+ x−1)3

= x3 +3x2 · x−1 +3x ·
(
x−1)2

+
(
x−1)3

Simplifying, we have the following. (
x+ x−1)3

= x3 +3x+3x−1 + x−3

Solving for x3 + x−3, we have the following.(
x+ x−1)3 −3 ·

(
x+ x−1)= x3 + x−3

Substituting this as the equivalent form of our integrand, we get the following.

∫ 2

1

x3 + x−3

x1 + x−1 dx =
∫ 2

1

(
x+ x−1

)3 −3 ·
(
x+ x−1

)
x1 + x−1 dx =

∫ 2

1

((
x+ x−1)2 −3

)
dx

We can now freely expand as follows.∫ 2

1

((
x+ x−1)2 −3

)
dx =

∫ 2

1

(
x2 +2 · x · x−1 +(x−1)2 −3

)
dx =

∫ 2

1

(
x2 + x−2 −1

)
dx

Integrating regularly, we have the following.

∫ 2

1

(
x2 + x−2 −1

)
dx =

(
x3

3
+

x−1

−1
− x
)∣∣∣∣2

1
=

(
23

3
−2−1 −2

)
−
(

13

3
−1−1 −1

)
Simplifying, we have the following.(

23

3
−2−1 −2

)
−
(

13

3
−1−1 −1

)
=

(
8
3
− 1

2
−2
)
−
(

1
3
−1−1

)
=

8
3
− 1

2
− 1

3
=

7
3
− 1

2
=

14−3
6

=
11
6

6



Problem 11.
∫ 3

0

3x+4
x2 +4x+3

dx

Proposed by Ritvik Teegavarapu

Solution:
7ln(2)

2

We first factor the denominator as follows.∫ 3

0

3x+4
x2 +4x+3

dx =
∫ 3

0

3x+4
(x+1) · (x+3)

dx

We can then seek the partial fraction decomposition form of this fraction as follows.∫ 3

0

3x+4
(x+1) · (x+3)

dx =
∫ 3

0

(
A

x+1
+

B
x+3

)
dx

To solve for A and B, we have the following system of equations in matching the numerator.

A · (x+3)+B · (x+1) = 3x+4

This gives us the following two equations.
A+B = 3

3A+B = 4

From these equations, we can deduce that A = 1/2 and B = 5/2. Therefore, our equivalent integrand becomes
the following.∫ 3

0

3x+4
(x+1) · (x+3)

dx =
∫ 3

0

(
1

2 · (x+1)
+

5
2 · (x+3)

)
dx =

1
2
·
(∫ 3

0

(
1

x+1
+

5
x+3

)
dx
)

We can evaluate this integral as follows.

1
2
·
(∫ 3

0

(
1

x+1
+

5
x+3

)
dx
)
=

1
2
· (ln |x+1|+5 · ln |x+3|)

∣∣∣∣3
0
=

1
2
· (ln(4)+5 · ln(6))− 1

2
· (ln(1)+5 · ln(3))

This simplifies as follows.

1
2
·(ln(4)+5·ln(6))− 1

2
·(ln(1)+5 ·ln(3))= ln(4)

2
+

5 · (ln(2)+ ln(3))
2

− 5ln(3)
2

=
2ln(2)

2
+

5ln(2)
2

=
7ln(2)

2

Problem 12.
∫ 1

0
ex · (tan(x)+ tan2(x)− x) dx

Proposed by Ritvik Teegavarapu

Solution: e · (tan(1)−1)

We seek to manipulate the integrand in the form of a product rule, otherwise known as ( f g)′ = f ′g+ g′ f .

7



Since we see that there is a ex present in the integrand, we claim that f = ex since it will not disappear in the
product rule. Substituting this into our product rule equation, we have the following.

(ex ·g(x))′ = ex ·g(x)+ ex ·g′(x) = ex · (g(x)+g′(x))

Therefore, setting this equal to the integrand, we have the following.

ex · (g(x)+g′(x)) = ex · (tan(x)+ tan2(x)− x)

g(x)+g′(x) = tan(x)+ tan2(x)− x

We first recognize that we have the following relation.

(tan(x))′ = sec2(x)

Therefore, we use the Pythagorean identity to expand our functional equation as follows.

g(x)+g′(x) = tan(x)+(sec2(x)−1)− x

Regrouping, we have the following.

g(x)+g′(x) = (tan(x)− x)+(sec2(x)−1)

Therefore, we say that g(x) = tan(x)− x. From there, our integrand becomes the following.

∫ 1

0
ex · (tan(x)+ tan2(x)− x) dx =

∫ 1

0
(ex · (tan(x)− x))′ dx = (ex · (tan(x)− x))

∣∣∣∣1
0

Evaluating, we have the final answer as follows.

(ex · (tan(x)− x))
∣∣∣∣1
0
= (e1 · (tan(1)−1))− (e0 · (tan(0)−0)) = e · (tan(1)−1)−1 · (0−0) = e · (tan(1)−1)

Problem 13.
∫

π/4

0
tan2(2θ −1) dθ

Proposed by Ritvik Teegavarapu

Solution: csc(2)− π

4

We immediately seek to eliminate the inner argument of the trigonometric function, so we consider the u-
substitution of u = 2θ − 1, which produces a differential of du = 2 dθ . Therefore, our integral becomes the
following. ∫

π/4

0
tan2(2θ −1) dθ =⇒

∫ (π−2)/2

−1
tan2(u)

(
du
2

)
Note that our bounds were transformed as follows.

u = 2 ·0−1 = 0−1 =−1

8



u = 2 ·
(

π

4

)
−1 =

π

2
−1 =

π −2
2

From here, we can use the Pythagorean identity relation of trigonometric functions, which states that tan2(u)+
1 = sec2(u). This also allows us to exploit that sec2(u) has a nice anti-derivative, which we show as follows.

∫ (π−2)/2

−1
tan2(u)

(
du
2

)
=

1
2
·
(∫ (π−2)/2

−1
(sec2(u)−1) du

)
=

1
2
·

[
(tan(u)−u)

∣∣∣∣(π−2)/2

−1

]

Evaluating this, we have the following.

1
2
·

[
(tan(u)−u)

∣∣∣∣(π−2)/2

−1

]
=

1
2
·
[(

tan
(

π −2
2

)
−
(

π −2
2

))
− (tan(−1)− (−1))

]
Simplifying, we have the following.

1
2
·
[(

tan
(

π

2
−1
)
−
(

π

2
−1
))

− (− tan(1)+1)
]
=

1
2
·
[
tan
(

π

2
−1
)
− π

2
+ tan(1)

]
We can simplify the first component using the definition of tangent and sum-angle identities as follows.

tan
(

π

2
−1
)
=

sin
(

π

2 −1
)

cos
(

π

2 −1
) = sin

(
π

2

)
cos(1)− cos

(
π

2

)
sin(1)

cos
(

π

2

)
cos(1)+ sin

(
π

2

)
sin(1)

=
sin
(

π

2

)
cos(1)

sin
(

π

2

)
sin(1)

=
cos(1)
sin(1)

= cot(1)

Furthermore, we can simplify cot(1) + tan(1) as follows using the Pythagorean identities and double-angle
identities.

cot(1)+ tan(1) =
cos(1)
sin(1)

+
sin(1)
cos(1)

=
cos2(1)+ sin2(1)

sin(1)cos(1)
=

1
sin(2)

2

= 2csc(2)

Therefore, our final answer becomes the following.

1
2
·
[
tan
(

π

2
−1
)
− π

2
+ tan(1)

]
=

1
2
·
[
2csc(2)− π

2

]
= csc(2)− π

4

Problem 14.
∫

π/2

0

1√
2− cos(θ)

dθ

Proposed by Ritvik Teegavarapu

Solution: 2 · arctan(
√

2+1)

We utilize the Weierstrass substitution to give us the following.∫
π/2

0

1√
2− cos(θ)

dθ =
∫ 1

0

1
√

2− 1−t2

1+t2

·
(

2 dt
1+ t2

)
=
∫ 1

0

2√
2(1+ t2)− (1− t2)

dt=
∫ 1

0

2
t2 · (

√
2+1)+(

√
2−1)

dt

From here, we scale to then try and formulate an inverse trigonometric expression.∫ 1

0

2
t2 · (

√
2+1)+(

√
2−1)

·
√

2−1√
2−1

dt =
∫ 1

0

2(
√

2−1)
t2 · (

√
2+1) · (

√
2−1)+(

√
2−1)2

dt =
∫ 1

0

2(
√

2−1)
t2 +(

√
2−1)2

dt

9



Note that the inverse trigonometric function of interest here is as follows, which should be a fairly obvious
result. ∫ a

b2 + x2 dx =
a
b
· arctan

( x
b

)
+C

Using this, we have the following.

∫ 1

0

2(
√

2−1)
t2 +(

√
2−1)2

dt =
2(
√

2−1)
(
√

2−1)
· arctan

(
x√

2−1

)∣∣∣∣1
0
= 2 · arctan

(
1√

2−1

)
= 2 · arctan(

√
2+1)

10


